カテゴリー
ガロア理論 数学

数式処理ソフトによるガロア群の算出と、べき根を用いた厳密解の表現 その7

\(\newcommand{\field}[1]{\mathbb{#1}}\newcommand{\Q}{\field{Q}}\)
「最小分解体の原始元 \(V\) で各解 \(\alpha_{1}, \alpha_{2}, \dotsc\) を表す式」の求め方について、これまでよりもずっと計算量が少なくて済む技法があることがわかりました。私は勉強不足で知らなかったのですが、その技法とは「代数拡大体上での因数分解」で、おそらく代数屋さんなら100万回くらいは見たことのある話なんだろうと思います。

カテゴリー
ガロア理論 数学

数式処理ソフトによるガロア群の算出と、べき根を用いた厳密解の表現 その6

前記事での「退職後は素人数学者」さんからの報告により、方程式 \(x^{3}-2=0\) については「退職後は素人数学者」さんのプログラムと jurupapa さんのプログラムでは結果が異なり、

「退職後は素人数学者」さんは解が出たが、それは不適な解も含んだものになった
jurupapa さんは計算の途中で \(0\) による割り算が発生し、エラーで手続きが停止する

ということになっています。

不可解なのは、同じアルゴリズムに従っているはずの2つのプログラムの動作がなぜか異なっていたことでしたが、おおよその事情がわかってきたので報告します。これまでの検討から、\(x^{3}-2=0\) を解く際の一連の異常には

べき根の選び方の不定性によって、\(0\) になる可能性も、ならない可能性もあるような式

が深く関わっていることがわかってきました(ここで、「べき根の選び方の不定性」というのは、\(1\) の原始 \(p\) 乗根の具体的な表式に含まれるべき根に関するものも含んでおり、\(1\) の原始 \(p\) 乗根の \(p-1\) 通りの不定性も包含したものとする)。実は、「退職後は素人数学者」さんの元記事「可解な代数方程式のガロア理論に基づいた解法」の第11節の、拡大体での商の計算(「分母の有理化」)のアルゴリズム(以下、アルゴリズム A とします)は、このような「べき根の不定性によって、\(0\) になる可能性がある式」が分母にある時はうまく行かない時があることがわかりました。おそらくこれが一連の問題の根っこにあります。